
A Demand Adaptive and Locality Aware (DALA) Streaming
Media Server Cluster Architecture �

Zihui Ge Ping Ji Prashant Shenoy
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

fgezihui,jiping,shenoyg@cs.umass.edu

ABSTRACT

The wide availability of broadband networking technologies such

as cable modems and DSL coupled with the growing popularity of

the Internet has led to a dramatic increase in the availability and

the use of online streaming media. With the “last mile” network

bandwidth no longer a constraint, the bottleneck for video stream-

ing has been pushed closer to the server. Streaming high quality

audio and video to a myriad of clients imposes significant resource

demands on the server. In this work, we propose a demand adaptive

and locality aware (DALA) clustered media server architecture that

can dynamically allocate resources to adapt to changing demand

and also maximize the number of clients serviced by the server clus-

ter. Moreover, our design exploits temporal locality among requests

by dispatching newly arriving requests to servers that are already

servicing prior requests for those objects, thereby extracting the

benefits of locality. We explore the efficacy of the DALA clustered

architecture using simulations. Our simulation results show that

DALA is highly adaptive, exhibits significant performance gains

when compared to static schemes, and has a low system overhead.

Our results demonstrate that DALA is a simple, yet effective ap-

proach for designing clustered media servers.

Categories and Subject Descriptors

Computer Systems Organization [PERFORMANCE OF SYSTEMS]:
Design studies

General Terms

Design

Keywords

Streaming Media, Server Cluster, Locality Aware, Demand Adap-
tive

�This research was supported in part by NSF grants CCR 9984030
EIA 0080119 and DARPA subcontract N66001-99C-8614

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’02, May 12­14, 2002, Miami, Florida, USA.
Copyright 2002 ACM 1­58113­512­2/02/0005 ...$5.00.

1. INTRODUCTION
The wide availability of broadband networking technologies such

as cable modems and DSL coupled with the growing popularity of
the Internet has led to a dramatic increase in the availability and
the use of online streaming media such as entertainment movies,
news clips, and educational and training materials. With the “last
mile” network bandwidth no longer a constraint, the bottleneck for
video streaming has been pushed closer to the server [24]. Stream-
ing high quality audio and video to a myriad of clients imposes
significant resource demands on the server. One cost-effective ap-
proach to scale the server capacity is to employ a server cluster.
For instance, a clustered approach is commonly used to design scal-
able web servers and several research prototypes and commercial
products have been developed with such an architecture [1, 18].
However, there are important differences between web workloads
and streaming workloads that prevent these approaches from be-
ing directly used for clustered streaming media servers. For in-
stance, clustered web servers typically replicate web content on
each server, thereby allowing any server to service an incoming
request. In contrast, streaming media objects are several orders
of magnitude larger than web objects and repositories of high-end
streaming servers can exceed several terabytes. Hence, full repli-
cation of content at each server is prohibitively expensive, necessi-
tating a partitioning of the content and the workload among servers
in the cluster. Moreover, retrieval and transmission of streaming
media objects imposes real-time constraints, while web requests
are typically serviced in a best-effort manner. Further, the service
time of web requests is in the order of hundreds of milliseconds,
while a typical streaming session lasts tens of minutes. Due to the
long-lived nature of sessions and real-time constraints, clustered
streaming servers need to be designed differently from clustered
web servers. On the other hand, like web workloads, requests for
streaming media are usually skewed and unpredictable. Accesses
to streaming media objects follow a Zipf-like distribution [8, 2]
and popularities of individual objects tend to vary over time [2].
Hence, dynamic allocation of cluster resources to meet the needs
of changing workloads and the dynamic distribution of requests
among servers in the cluster are important design issues in clus-
tered streaming servers.

To address these challenges, in this paper, we propose a de-
mand adaptive and locality aware (DALA) clustered media server
architecture that can dynamically allocate resources to adapt to
changing demand and also maximize the number of clients ser-
viced by the server. The DALA architecture is demand adaptive

since it can dynamically vary the amount of resources (number of
servers, disk space, disk and network bandwidth on each server) al-
located to each object based on its popularity—more resources are

1

SWITCH

DiskComputer

... ...
S

1

S

2

S

N

S

i

S

i

D

1

D

2

D

N

D

i

D

i

Figure 1: A Sample Cluster Server Infrastructure

allocated to objects with increasing popularity and these resources
are relinquished as the popularity wanes. Moreover, the architec-
ture is locality aware since it can dispatch newly arriving requests
to servers that are already servicing prior requests for those ob-
jects and thereby extract the benefits of memory caching. Our re-
source allocation architecture and request distribution mechanisms
attempt to optimize the utilization of the memory, disk and net-
work resources within the cluster, thereby maximizing overall sys-
tem capacity. We demonstrate the efficacy of the DALA clustered
architecture using simulations. Our simulation results show high
responsiveness to changing loads, performance gains due to local-
ity awareness, and low overheads.

The remainder of this paper is organized as follows. Section 2
presents the details of our DALA clustered server architecture. Sec-
tion 3 presents our experimental results. Section 4 discusses related
work, and finally, Section 5 presents some concluding remarks.

2. DALA SERVER CLUSTER ARCHITEC­

TURE
In this section, we present the details of our demand-adaptive and

locality-aware architecture for clustered streaming servers. We first
present the system model assumed in our work and then present the
details of our architecture.

2.1 System Model
Consider a cluster of N servers, denoted by S

1

, S
2

, ..., S
N

, that
are interconnected by a high-speed switch (see Figure 1). Assume
that each server S

i

has a local disk D
i

for storing streaming media
content.

Our architecture assumes that each server can serve multiple ob-
jects from its local disk and that each object can be served from
multiple servers. The number of servers that can serve a streaming
media object depends on its popularity — the more popular the ob-
ject, the larger is the number of servers allowed to serve it. We refer
to a set of servers that can serve a streaming media object as a group

and use G
j

to denote the group that serves object j. Consider the
example shown in Figure 2 where each circle denotes a group and
each square denotes a server. The figure illustrates the difference in
group sizes, the overlap between groups, and the variation in group
sizes with changing popularities (see Fig 2(a) and (b)). We require
that each group have at least one server in it and that the server be
the one holding the primary copy of the object.

The local disk on each server consists of two partitions — one
used to store primary copies of objects and the other used to store
dynamically created replicas of objects.

� Primary copy partition: At least one copy of each object
is stored permanently on some server in the cluster. This
statically stored file is referred to as the primary copy of the

S

1

S

3

S

4

S

7

S

5

S

6

S

8

S

9

S

10

G

2

G

4

G

6

G

3

G

1

G

5

S

3

S

4

S

7

S

5

S

6

S

8

S

9

S

10

(a) (b)

S

11

S

11

S

2

S

1

S

2

G

6

G

3

G

4

G

2

G

5

G

1

Figure 2: Conceptual DALA Server Cluster Design

object. Our current design assumes a single primary copy for
each object and we define

r

j

: as the server that has the primary copy of object j

where 1 � j �M , and M is the total number of objects.

� Dynamic service partition: When a group consists of mul-
tiple servers, each server (with the exception of r

j

) stores
a replica of the object on its local disk. These replicas are
stored in the dynamic service partition. The storage space
for a replica is reclaimed when the server leaves the corre-
sponding group.

The relative sizes of the primary copy and the dynamic service par-
titions depend on the mean group size across all objects in the sys-
tem. Assuming a mean group size of k, a good rule of thumb is to
assign storage space in the ratio 1 : k� 1. We assume that primary
copies of objects are assigned to servers in a round-robin manner.
Initially, the dynamic service partition is empty (all objects have an
initial group size of 1). Our architecture also assigns a token for
each object. The token holder for an object is responsible for ac-
cepting and processing all new requests for that object. We define

t

j

: as the token holder for object j

Initially we set t
j

= r

j

(the server with the primary copy is as-
signed to be the initial token holder for the object).

2.2 DALA Demand Dissemination Protocol
Consider a cluster of N servers as described in Section 2.1. As-

sume that a new request for a streaming media object arrives at one
of these servers. We assume that each server maintains information
about the token holder t

j

for all objects stored in the cluster. When
a new request arrives, the server determines the token holder for
the object and forwards the request to the token holder for further
processing (an alternate approach is to maintain this knowledge at
a layer-7 switch, which then forwards the incoming request directly
to the corresponding token holder).

Upon receiving a new request, the token holder performs admis-
sion control to determine whether sufficient resources exist to ser-
vice the new request locally. Such an admission control algorithm
needs to ensure that sufficient network bandwidth, disk bandwidth
and memory buffers exist to service the new request. A number of
admission control algorithms have been proposed recently [12, 7,
23]; any such algorithm suffices for this purpose. Depending on
the results of admission control, the token holder either accepts the
request or decides to pass the token to another server in the cluster

2

find and pass
 the request to

t

j

t

j

 can I serve?

serve the
 request

Y

N

 for each ,
 ask ’s load info

S

i

=2 G

j

S

i

N

 Is there an
 to serve?S

i

=2 G

j

 drop the request

send ;
request to

t

j

= S

i

S

i

Y

N

 am I ?
t

j

N

Y

 has a mirror
copy of j?

S

i

 ask send a mirror
copy of j to

N

S

i

r

j

Y

Y

 get a request
 for object j

for each ,
 ask ’s load info

S

i

2 G

j

S

i

 Is there an
 to serve?S

i

G

j

= G

j

[S

i

Figure 3: A Pictorial Representation of the DALA Demand Dis-

semination Algorithm

(which is then responsible for determining how to proceed with the
request).

� If admission control is successful, then the token holder t
j

accepts the request and services it.

� If admission control fails, then the token holder lacks suffi-
cient resources to service any further requests for this object.
Hence, the token holder invokes the token passing protocol
(described in Section 2.3) to determine a new token holder
for the object. The request is then forwarded to the new to-
ken holder for processing (and subsequent requests for the
object are also sent to the new token holder).

� If the token passing algorithm is unable to locate a new to-
ken holder in the group, then all group members are over-
loaded indicating that the group needs to be expanded. In
such a scenario, the token holder invokes the dynamic group
membership protocol (described in Section 2.4) to pull a new
member into the group. Both the token and the request are
forwarded to this server for further processing.

� If no suitable servers can be pulled into the group, then clus-
ter lacks resources to service the request and the request is
denied.

Figure 3 illustrates this demand dissemination protocol pictorially.
Next we briefly describe the token passing and dynamic group mem-
bership protocols.

2.3 Token Passing Within a Group
The token holder for an object processes and services newly ar-

riving requests until no additional requests can be accepted. At this
point, the token is passed to another server in the group. To do so,
the token holder queries group members for their load information
and picks the server with the least load. Assuming that this server
is willing to assume token holder responsibilities, the token is sent
to this server and its identity is broadcast to the entire cluster as the
new token holder for the object. If all group members are heavily
loaded (indicating that no group member can assume token holder
responsibilities), then the dynamic group membership protocol is
invoked to expand the group (see Section 2.4).

Several design decisions affect the efficiency of the token pass-
ing protocol. First, choosing a new token holder requires knowl-
edge of the load on each server in the group. The load informa-
tion can be gathered in an eager or lazy fashion. In the former
approach, each server periodically broadcasts its load information
to all other servers. Each server maintains a table of the load on
various servers and uses this table to pick a new token holder when
the need arises. Since the recency of the load information deter-
mines its accuracy, such an approach can result in decisions based
on inaccurate information [10]. Further, if token passing is not too
frequent, exchanging load information results in wasted messages.
The advantage though is that a new token holder can be chosen
quickly, reducing the latency of token passing. The lazy approach,
on the other hand, queries each server for its load information only
when necessary (at token passing time). While this results in up-to-
date load information, it can increase the latency of token passing
(since the token holder must wait until all servers in the group have
responded before making a decision or time out). A simple but ef-
fective approach to improve the latency of lazy load gathering it
to use randomization. Theoretical studies have shown that picking
two (or a constant k, k > 1) servers at random and choosing one of
the two (or k) servers based on their loads is as effective as query-
ing all servers and picking the one with minimum load [17]. This is
especially true when the group size is large. Such a randomized ap-
proach reduces the complexity of lazy token passing to a constant
and makes it independent of group size.

A second design decision is the invocation of the token passing
algorithm itself. This can also be done in a lazy or eager manner.
In lazy token passing, a new token holder is chosen only when ad-
mission control for a new request fails. In eager token passing, a
new token holder is chosen when the load on the server exceeds
a high threshold. Whereas lazy token passing can increase the la-
tency for servicing new request, eager token passing can increase
the overhead of unnecessary token passes.

As a final caveat, we note that handling lost tokens in DALA
is similar to handling the failure of a coordinator within a group
of distributed processes [22]. Group members can check on the
status of the token holder by exchanging heartbeat messages. In
the event that the token holder is down, a new token holder can
be chosen by running a simple leader election algorithm within the
group [22]. Such a strategy fails only when the token holder was the
sole member of the group (and has failed) and no other copy of the
video exists in the cluster; in such cases, the video can no longer be
served by the cluster until a copy is retrieved from tertiary storage.

2.4 Adapting the Group Size to the Load
To accommodate changing workloads, the group size of an ob-

ject is varied dynamically based on its popularity. The group size
is increased when the object popularity increases and is shrunk
when the popularity wanes. This is achieved by two separate pro-
cedures that constitute our dynamic group membership protocol —

3

the group expansion procedure and the group contraction proce-
dure.

A group is expanded when the token passing protocol fails to
pick a new token holder from the existing group. To add a new
member to the group, the token holder needs to know the load on
each remaining server and whether these servers already have a
replica of this object (since storage space in the dynamic service
partition is reclaimed in a lazy fashion and only to make room for
a new incoming replica, a server might continue to store a copy of
this object from its previous incarnation as a group member for the
object). Given this information, the current token holder picks the
server with the least load and preferably one that has a replica of
the object. This server is invited to join the group and also sent
a copy of the object if it doesn’t have one already. The server is
then sent the token for the object and the pending request for fur-
ther processing. The identity of the new group member is broadcast
to the remaining group members and its identity as the new token
holder is sent to the entire cluster. Like the token passing proto-
col, the group expansion procedure can be invoked in a lazy or
eager manner. This design decision has important implications on
performance and the startup latency for requests, especially since
propagation of a replica to a new group member can involve signif-
icant latency (due to large object sizes). On the other hand, eager
group expansion can result in wasted copying effort.

The group size for an object shrinks when its popularity de-
creases. Our architecture uses a timeout strategy for group con-
traction — after finishing the service of all the related requests,
if a group member does not receive the token within a timeout
interval, it automatically relinquishes group membership (and an-
nounces this to the rest of the group). This allows servers to free up
resources and reuse them for objects with increasing popularities.

2.5 Exploiting Locality Awareness
One possible approach for load balancing within a cluster is to

distribute incoming requests evenly among group members. Such
a request distribution policy, however, does not allow the cluster
to exploit temporal locality among requests. The need to exploit
locality among requests motivates our decision to use a token for
each object. By employing the concept of a token holder, all in-
coming requests for an object are sent to the same server (the token
holder), enabling the server to exploit temporal locality relation-
ships among requests. Each server employs an interval caching
policy [11] and sending all request to the token holder improves
the chances of an interval formation, resulting in substantial perfor-
mance gains for very popular objects (each interval that is formed
allows the server to service one or more streams directly from mem-
ory buffers, thereby saving precious disk bandwidth).

Similar locality-aware request distribution policies for web re-
quests have been studied in [18] and have exhibited substantial
performance gains. Since web content is served in a best-effort
manner, in such servers, exploiting locality needs to be weighed
against load balancing considerations (load balancing and locality
awareness have opposite tradeoffs). Streaming media servers, on
the other hand, provide guaranteed service where the quality of
service is ensured through admission control. Thus, we are able
to exploit locality to the maximum extent without worrying about
load balancing considerations (so long as QoS requirements are not
violated, the exact distribution of load among various servers is
of secondary importance). Hence, given the long-lived nature of
streaming sessions, we expect to observe significant performance
gains using a locality-aware request distribution policy.

3. EXPERIMENTAL RESULTS
We evaluate the efficiency of the DALA architecture by using

simulations. In this section, we present our experiments’ settings
and the corresponding evaluation results.

3.1 Effect of Demand Adaptation
Our first experiment simulates a flash flow scenario where the

popularity (and request frequency) of an object increases suddenly,
stays at that level for a certain period, and then drops gradually.
The objective of the experiment is to examine how the DALA ar-
chitecture adjusts to unpredictable workload changes.

Our simulation setup assumes a cluster of 10 low-end commod-
ity PCs that constitute the DALA cluster. Each server is assumed
to have 128 MB of memory, a 20 GB hard disk with a maximum
throughput of 40 Mbps, and a 100 Mbps Ethernet card. We as-
sume that the cluster serves 100 streaming media objects and that
the length of these objects is uniformly distributed between 60 and
120 minutes. Each object is assumed to be MPEG-1 encoded with
a maximum bit rate of 1.5 Mbps.

Figure 4 depicts the workload seen by the cluster over a 12 hour
period. Request arrivals are assumed to be Poisson. The top solid
curve shows the total number of request arrivals over 5 minute in-
tervals, while the dashed curve below it plots the number of re-
quests for the most popular object in the cluster. The two flat lines
represent the total network bandwidth capacity and the total disk
bandwidth available in the cluster.

We show how DALA adapts to workload changes by examin-
ing how the group size G

1

varies over time (G
1

is represented by
the bottom curve in the figure). As shown, as the workload in-
creases, G

1

increases in steps until the group spans all 10 servers
in the cluster. When the workload starts decreases after the first
six hours, we see that G

1

contracts gradually as well. Observe that
there is a time lag between the decrease in workload and the corre-
sponding decrease in G

1

. This is because, the a server drops out of
a group only after it has finished servicing all ongoing requests for
the object plus a timeout duration.

The set of crosses in the figure represents the number of requests
that are denied. Observe that the most of denied requests appears
after the group size G

1

reaches its maximum possible value of 10
servers. This indicates that DALA makes a very good use of system
resources. Further, observe that requests are dropped only when the
workload approaches (and, in some cases, exceeds) the total disk
and network capacities of the cluster (request drops are inevitable
if the total workload exceeds total capacity).

Together these results show that DALA adapts to changing work-
load and makes judicious use of cluster resources.

3.2 Comparison With other Request Distribu­
tion Policies

To further evaluate the performance benefits due to demand adap-
tation, we compare DALA to two other request distribution poli-
cies: static resource allocation (SRA) and static resource alloca-

tion with locality (SRL). In static resource allocation, the number
of servers allocated to serve each object is determined based on
long-term popularities for each object. Thus the configuration of
the system is done periodically and manually; between configura-
tion changes, the number of servers assigned to each object (i.e.,
the group size) is kept fixed. When a request arrives, it is sent to
a randomly chosen server in its group. Static resource allocation
with locality (SRL) is similar to SRA, except that it exploits local-
ity among request arrivals. This is achieved using the concept of a
token holder and token passing. Thus, SRL is like DALA, except
that the group sizes are fixed.

4

0

10

20

30

40

50

60

-100 0 100 200 300 400 500 600 700

Maximum Request
Frequency Bounded
by Network Capacity

Maximum Request

Frequency Bounded

by Disk Capacity

time (minutes)

Overall Request Distribution
Request Distribution for Object 1

Number of Servers in Group 1
Number of Dropped Requests

Figure 4: Effect of Dynamically Changing Workloads.

0

200

400

600

800

1000

1200

1400

1600

1800

-100 0 100 200 300 400 500 600 700

c
u

m
u

la
ti
v
e

 n
u

m
b

e
r

o
f

d
e

n
ie

d
 r

e
q

u
e

s
ts

time (minutes)

DALA
SRL
SRA

Figure 5: Comparing Different Request Distribution Policies

We use the same setup as our previous experiment to evaluate the
three policies, SRA, SRL and DALA. To determine the group sizes
for SRA and SRL, we first run the system with DALA for about 2
hours (120 minutes) and then use the group sizes chosen by DALA
to configure SRA and SRL. The group sizes remain fixed for the
two schemes for the rest of the simulation. Choosing the group
size in this manner permits a fair comparison among the three poli-
cies. Using the same workload as our previous experiment, we
compute the number of requests denied by the three policies. Fig-
ure 5 plots the cumulative number of dropped requests for the three
policies. The difference between SRA and SRL indicates the ben-
efits of locality awareness, while that between SRL and DALA in-
dicates the additional benefit due to demand adaptation. The figure
shows DALA significantly outperforms SRA and SRL due to its
demand adaptive and locality aware nature.

3.3 Effect of Changing Workloads
Whereas the workload in the previous section was dominated by

requests to a single popular object (to better illustrate some of the
key aspects of the DALA architecture), in this section, we evaluate
the performance of DALA over a wide range of workloads.

To do so, we assume a cluster of 20 high-end servers, each with
1GB memory, a high-end 100 GB disk with a maximum throughput

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

20 30 40 50 60 70 80 90 100

DALA
SRL
SRA

request load (percentage of network bandwidth)

d
e
n
ie

d

re

q
u
e
s
t
w

o
rk

lo
a
d

Total Disk Capacity

Figure 6: Comparing the Capacity of Server Clusters

of 400 Mbps and a 1 Gbps Ethernet card. The cluster is assumed
to serve 300 high-quality MPEG-2 videos, each ranging from 60 to
120 minutes and with encoding rates ranging from 4 to 8 Mbps.

Like in the previous experiment, request arrivals are assumed to
be Poisson and request popularities follows Zipf’s distribution. To
simulate changing popularities, we randomly pick a small fraction
(10%) of the objects after every 100 requests and exchange their
ranks. We vary the arrival rate and measure the corresponding ra-
tio of the dropped request load to the total request load. For each
level of request arrival rate, we generate request traces of 24 hours
long and repeat each experiment for DALA, SRA and SRL. Like
in the previous experiment, the group sizes for SRA and SRL are
determined using DALA during the warmup phase, which is set to
be the first half (12 hours) of each experiment. The measurement
starts when the warmup phase is over.

Figure 6 plots the observed drop rate for the three policies for
different loads (the X axis plots the load as a percentage of the to-
tal network capacity; the total disk capacity is 40% of the network
capacity). For each value of request arrival rate, we run 100 ex-
periments and calculate the mean and 95% confidence interval of
the dropped request load ratio. We are actually showing the con-
fidence intervals in Figure 6. However, they are too small to be
easily distinguished.

Since SRA does not exploit any locality, it gets minimal benefits
from memory caching. Hence, as shown in Figure 6, the capac-
ity of the cluster with SRA is limited by the total disk capacity.
Beyond this point, SRA starts dropping requests and the drop rate
increases with increasing arrival rates. SRL has a lower drop rate
than SRA due to benefits from memory caching. DALA yields the
best performance. DALA starts dropping requests only when the
load exceeds 60% of the total network capacity; this load is around
150% of the total disk capacity. Thus, the demand adaptive and lo-
cality aware nature allows DALA to support 50% additional clients
beyond what the disk can support. At very high arrival rates, all
server resources are almost fully utilized regardless of the policy.
This explains the negligible difference between DALA and SRL;
the difference between SRL and SRA in this region shows how
much the system capacity can be increased by exploiting request
locality.

Finally, Figure 7 depicts the overheads of DALA for different
workloads. The figure shows the number of control operations,
namely token passes and group expansions, per minute at different
loads. As of studying the dropped workload, we also calculate the

5

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

20 30 40 50 60 70 80 90 100

n
u
m

b
e
r

o
f
c
o
n
tr

o
l
o
p
e
ra

ti
o
n
s
 p

e
r

m
in

u
te

requested load (percentage of network capacity)

Token passing
Member pulling in

Figure 7: Control Overhead of DALA

0

10

20

30

40

50

60

70

0 500 1000 1500 2000
memory size on each server(MB)

DALA
SRL
SRA

 e

ff
e
c
ti
v
e
 s

e
rv

ic
e
 c

a
p
a
c
it
y

(p
e
rc

e
n
ta

g
e
 t
o
 t
o
ta

l
n
e
tw

o
rk

 c
a
p
a
c
it
y
)

Figure 8: Effective Service Capacity of the Server Cluster

mean and 95% confidence interval per 100 sample runs in studying
the system overhead, and we show the confidence intervals in Fig-
ure 7 as well. We observe from this figure that, even at very heavy
loads, there are fewer than five control operations per minute, sug-
gesting a very low control overhead.

3.4 Determining Effective Service Capacity
In many scenarios, we are interested in the maximum workload

the system can support before it starts dropping requests. This
workload indicates the effective service capacity of the server clus-
ter. In this section, we use this metric to evaluate the system per-
formance under different system parameters.

To obtain the effective service capacity of the cluster, we con-
ducted an experiment where we gradually increased the request
arrival rate (and hence the workload) from 0 to 100% in steps of
0.5% (here, a load of 100% represents the normalized load at with
the network interface on a node saturates). At each workload level,
we conducted 30 experiments and used the hypothesis test to ex-
amine whether the ratio of denied workload is zero. If the ratio of
denied requests at a given workload level is significantly different
from zero (at a significance level of 0.05), then we stop and take
the last successful workload level as the effective service capacity
of the server cluster.

In the first set of simulations, we use the same video repository

0

20

40

60

80

100

200 400 600 800 1000

 e

ff
e
c
ti
v
e
 s

e
rv

ic
e
 c

a
p
a
c
it
y

(p
e
rc

e
n
ta

g
e
 t
o
 t
o
ta

l
n
e
tw

o
rk

 c
a
p
a
c
it
y
)

DALA
SRL
SRA

disk troughput (Mbps)

Figure 9: Effective Service Capacity of the Server Cluster

as described in Section 3.3 and also use the same server cluster con-
figuration except that we vary the size of memory on each server.
Figure 8 compares the effective service capacities of different ar-
chitectures when the memory sizes on each server are 256 MB,
512 MB, 1 GB and 2 GB, respectively. In all cases, DALA shows
a significantly higher effective service capacity than SRL or SRA.
Also, SRL and SRA do not exhibit a significant difference in their
effective service capacities, especially when memory size on each
node is sufficiently large. This can also be inferred from Figure
6, since exploiting temporal locality only improves the system per-
formance at high loads or during overloads. For all mechanisms,
we see that the effective service capacity increases sub-linearly as
more memory added to each server.

Figure 9 shows another set of experiments where each server in
the cluster has a fixed 1GB memory and we vary the disk through-
put on each server. Consistent with previous experiment, DALA
shows a substantial performance gain over SRL or SRA. We also
observe that when the disk throughput is low (less than 600Mbps),
the disk is the bottleneck device. Hence, the system performance
improves with increase in the disk throughput. Beyond a through-
put of 600Mbps (with a network interface bandwidth of 1 Gbps),
we see no further gains by further increasing the disk throughput.
This is because the effects of memory caching govern the sys-
tem performance in this operating region and increasing the disk
throughput can no longer help the system achieve a higher effec-
tive service capacity.

4. RELATED WORK
Research on video-on-demand systems in the early nineties led

to a plethora of efforts on admission control [12, 7], scheduling
[23], striping [21, 15, 13] and caching [11]. All of these efforts
were primarily targeted toward single node servers.

More recent work has focused on distributed media servers [5,
20, 4, 16]. The Tiger distributed video server employs network
striping across a cluster of nodes and uses a centralized controller
to coordinate these nodes. Network striping allows the load on
various nodes to be balanced. In contrast, DALA stores each ob-
ject on a single node and uses dynamic replication, token passing
and changes to group membership to accommodate changing work-
loads. Further, unlike the centralized controller in Tiger, DALA
uses a fully distributed architecture and has no single point of fail-
ure. The Exedra distributed media server also employs distributed
striping across disks connected to a storage area network. A set of

6

transfer nodes access data from disks and transmit them to clients.
Some of these techniques are orthogonal to our work and can be
employed in DALA as well. For instance, use of a storage area net-
work instead of local disks in DALA can reduce the overheads of
tasks such as object replication.

A recent study has focused on algorithms for distributed caching
of streaming media content in the Internet [6]. In this approach, ob-
jects are partitioned into smaller segments that are replicated across
different caches for load balancing. The focus of the work is pri-
marily on placement and caching and is orthogonal to our effort.
Moreover, some of the techniques in [6] require long-term popular-
ity statistics, which is not a requirement in DALA.

Finally, several recent efforts have investigated techniques such
as periodic broadcast and patching to scale the network capacity of
the server to a large number of users using multicast [3, 19, 14, 9].
These techniques complement our work, since all of them can be
employed by DALA as well.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a demand adaptive and locality aware

(DALA) architecture for clustered media servers. DALA employs
a fully distributed architecture and requires no priori knowledge
of the workload or object popularities. The resource allocation
scheme and request distribution mechanism in DALA optimize the
utilization of the memory, disk and network resources within the
cluster, thereby maximizing overall system capacity. Our simu-
lation results showed that DALA is highly adaptive, exhibits sig-
nificant performance gains when compared to static schemes, and
has a low system overhead. Our results demonstrated that DALA
is a simple, yet effective approach for designing clustered media
servers.

As part of future work, we plan to develop analytical models for
our techniques and evaluate the efficacy of our architecture using
real-world traces. Furthermore, we would like to extend DALA
into a distributed server architecture over Internet, which will re-
quire us to study the impact of various network parameters on sys-
tem performance.

Acknowledgments

We thank the anonymous reviewers for their comments. Any opin-
ions, findings, and conclusions or recommendations expressed in
this paper are those of the authors and do not necessarily reflect the
views of the funding agencies.

6. REFERENCES
[1] Nortel alteon web switching.

http://www.nortelnetworks.com/products/01/alteon/, 2001.

[2] J. Almeida, J. Krueger, D. Eager, and M. Vernon. Analysis of
educational media server workloads. In NOSSDAV’01., June
2001.

[3] Kevin C. Almeroth and Mostafa H. Ammar. The use of
multicast delivery to provide a scalable and interactive
video-on-demand service. IEEE Journal of Selected Areas in

Communications, 14(6):1110–1122, 1996.

[4] Stergios V. Anastasiadis, Kenneth C. Sevcik, and Michael
Stumm. Modular and efficient resource management in the
exedra media server. In 3rd USNIX Symposium on Internet

Technologies and Systems, San Francisco, California, March
2001.

[5] W. Bolosky, J. Draves, R. Fitzgerald, G. Gibson, M. Jones,
S. Levi, N. Myhrvold, and R. Rashid. The tiger video
fileserver. In NOSSDAV’96, Apr 1996.

[6] Youngsu Chae, Katherine Guo, Milind M. Buddhilot,
Subbash Suri, and Ellen W. Zegura. Silo, rainbow, and
caching token: Schemes for scalable, fault tolerant stream
caching. To appear in Special Issue of IEEE JSAC on

Internet Proxies.

[7] E. Chang and A. Zakhor. Cost analyses for vbr video servers.
In Proceedings of Multimedia Computing and Networking

(MMCN) Conference, pages 381–397, 1996.

[8] Maureen Chesire, Alec Wolman, Geoffrey M. Voelker, and
Henry M. Levy. Measurement and analysis of a
streaming-media workload. In USITS, 2001.

[9] Tzi cker Chiueh and Chung ho Lu. A periodic broadcasting
approach to video-on-demand service. In SPIE First

International Symposium on Technologies and Systems for

Voice, Video, and Data Communications, volume 2615,
Philadelphia PA, Oct. 1995.

[10] Michael Dahlin. Interpreting stale load information. In 19th

IEEE International Conference on Distributed Computing

Systems (ICDS), Austin, TX, May 1999.

[11] A. Dan and D. Sitaram. Buffer management policy for a
on-demand video server. Technical Report RC 19347, IBM.

[12] V. Firoiu, J. Kurose, and D. Towsley. Efficient admission
control of piecewise linear traffic envelopes at edf
schedulers. IEEE/ACM Transactions on Networking.

[13] John H. Hartman and John K. Ousterhout. The Zebra striped
network file system. ACM Transactions on Computer

Systems, 13(3):274–310, 1995.

[14] Kien A. Hua and Simon Sheu. Skyscraper broadcasting: A
new broadcasting scheme for metropolitan video-on-demand
systems. In SIGCOMM, pages 89–100, 1997.

[15] J.R.Santos and R. Muntz. Comparing random data allocation
and data striping in multimedia servers. In ACM Sigmetrics,
Santa Clara, CA, June 2000.

[16] J.R.Santos and R.Muntz. Performance analysis of the rio
multimedia storage system with heterogeneous disk
configurations. In 6th ACM International Multimedia

Conference, Bristol, United Kingdom, Sep. 1998.

[17] Michael Mitzenmacher, Andréa W. Richa, and Ramesh
Sitaraman. The power of two random choices: A survey of
the techniques and results. In P. Pardalos, S. Rajasekaran,
and J. Rolim, editors, Handbook of Randomized Computing.
Kluwer Press.

[18] Vivek S. Pai, Mohit Aron, Gaurav Banga, Michael Svendsen,
Peter Druschel, Willy Zwaenepoel, and Erich Nahum.
Locality-aware request distribution in cluster-based network
servers. In ACM Eighth International conference on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS-VIII), San Jose, CA, Oct 1998.

[19] Jehan-François Pâris, Darrell D. E. Long, and Patrick E.
Mantey. A zero-delay broadcasting protocol for video on
demand. In the Seventh ACM International Multimedia

Conference, Orlando, October 1999.

[20] Olav Sandsta, Stein Langorgen, and Roger Midtstraum.
Video server on an ATM connected cluster of workstations.
In International Conference of the Chilean Computer

Science Society, pages 207–217, 1997.

[21] Prashant Shenoy and Harrick M. Vin. Efficient striping
techniques for variable bit rate continuous media file servers.
Performance Evaluation, 38(3):175–199, December 1999.

[22] Andrew S. Tanenbaum. Distributed Operating Systems.
Prentice Hall, 1995.

7

[23] Harrick M. Vin, Alok Goyal, and Pawan Goyal. Algorithms
for designing multimedia servers. Computer

Communications, 18(3):192–203, 1995.

[24] Yubing Wang, Mark Claypool, and Zheng Zuo. An empirical
study of realvideo performance across the internet. In ACM

SIGCOMM Internet Measurement Workshop, San Francisco,
California, November 2001.

8

